PAGE 217 * RCVD AT 6/1/2005 4:11:18 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/0 * DNIS:8729306 * CSID:2812275383 * DURATION (mm-ss):01-54

IN THE CLAIMS:

The pending claims are set forth below and have been amended and/or cancelled, without prejudice, where noted:

- 1. (Cancelled)
- 2. (Currently Amended) The method of claim 4 20, wherein said Ziegler-Natta catalyst has a titanium content within the range of 1.7-2.2 wt.%.
- 3. (Original) The method of claim 2 wherein said Ziegler-Natta catalyst has a titanium content of at least 1.8 wt.%.
- 4. (Currently Amended) The method of claim 1 20, wherein said polymer fluff has a melt flow rate in excess of at least 300 grams/10minutes and a xylene soluble content of no more than 3.5 wt. %.
- 5. (Currently Amended) The method of claim <u>1.20</u>, wherein said supported Ziegler-Natta catalyst comprises titanium tetrachloride on a magnesium-based support.
- 6. (Original) The method of claim 5 wherein said internal electron donor is dibutylphthalate.
- 7. (Original) The method of claim 6 wherein said external electron donor is cyclohexylmethyldimethoxysilane.
- 8. (Currently Amended) The method of claim 1 20, wherein said trialkyl aluminum co-catalyst is triethyl aluminum.
- 9. (Original) The method of claim 8 wherein said tryethyl aluminum contains aluminum hydride in an amount of no more than 1 wt.%.

- 10. (Currently Amended) The method of claim 1_20 further comprising supplying hydrogen to said reactor in an amount of no more than 1 mole percent of the propylene supplied to said reactor.
- 11. (Original) The method of claim 10 wherein said hydrogen is supplied to said reactor in an amount within the range of 0.45-0.9 mole percent of the propylene supplied to said reactor.
- 12. In a process for polymerization of propylene with a Ziegler catalyst (Original) to provide a high melt flow index propylene polymer, the method comprising:

providing a supported catalyst component comprising a titanium tetrahalide supported on a magnesium based support and an internal electron donor comprising a diester of an aromatic dicarboxylic acid, said catalyst component containing titanium in an amount within the range of 1.7-2.2 wt.%;

providing a trialkyl aluminum co-catalyst component selected from the group consisting of trimethylaluminum and triethylaluminum;

providing an organosilyl external electron donor component;

combining said supported catalyst component, said organoaluminum co-catalyst component and said external electron donor component in relative amounts to provide an aluminum/silicon mol ratio within the range of 10-500 an aluminum/titanium molar ratio within the range of 50-500 and a silicon/titanium mol ratio within the range of 1-50;

introducing said combined catalyst system into a polymerization reactor and into a contact with propylene;

supplying hydrogen into said polymerization reactor, and

within said polymerization reactor effecting polymerization of said propylene in the presence of said catalyst system to produce a polymer fluff having a melt flow rate of at least 300grams/10 minutes and a xylene soluble content of no more than 4 wt.%.

- 13. (Original) The method of claim 12 wherein said Ziegler-Natta catalyst has a titanium content of at least 1.8 wt.%.
- 14. (Original) The method of claim 12 further comprising supplying hydrogen to said reactor in an amount of no more than 1 mole percent of the propylene supplied to said reactor.
- 15. (Original) The method of claim 16 wherein said hydrogen is supplied to said reactor in an amount within the range of 0.45-0.9 mole percent of the propylene supplied to said reactor.
- 16. (Original) The method of claim 14 wherein said internal electron donor is dibutylphthalate.
- 17. (Original) The method of claim 16 wherein said external electron donor is cyclohexylmethyldimethoxysilane.
- 18. (Original) The method of claim 17 wherein said trialkyl aluminum contains aluminum hydride in an amount of no more than 1 wt.%.
- 19. (Original) The method of claim 17 wherein said polymer fluff has a xylene soluble content of 2.8-3.5 wt.%.

Please add the following new claims:

20. (New) In the production of a stereo regular propylene polymer, the method comprising:

operating a polymerization reactor under temperature and pressure conditions effective for the reaction of propylene supplied to said reactor to produce a stereo regular propylene polymer fluff;

supplying a monomer stream containing propylene to said reactor;

incorporating into said monomer stream a titanium-based supported Ziegler-Natta Catalyst having an internal electron donor and a titanium content in amount of from 1.7 wt.% to 2.2 wt. %;

supplying to said propylene monomer stream a co-catalyst comprising a trialkylaluminum wherein the co-catalyst is present in an amount to provide an aluminum/titanium molar ratio within the range of 50-500;

supplying to said propylene monomer stream a silicone-based external electron donor in an amount to provide an aluminum/silicon molar ratio within the range of 10-500; and

recovering polymer fluff from said polymerization reactor having a melt flow rate of at least 200 grams/10 minutes and a xylene soluble content of no more than 4 wt.%.

21. (New) In the production of a stereo regular propylene polymer, the method comprising:

operating a polymerization reactor under temperature and pressure conditions effective for the reaction of propylene supplied to said reactor to produce a stereo regular propylene polymer fluff;

supplying a monomer stream containing propylene to said reactor;

incorporating into said monomer stream a titanium-based supported Ziegler-Natta Catalyst having an internal electron donor consisting essentially of a phthalate compound and a titanium content in amount of at least 1.7 wt.%;

supplying to said propylene monomer stream a co-catalyst comprising a trialkylaluminum wherein the co-catalyst is present in an amount to provide an aluminum/titanium molar ratio within the range of 50-500;

supplying to said propylene monomer stream a silicone-based external electron donor in an amount to provide an aluminum/silicon molar ratio within the range of 10-500; and

recovering polymer fluff from said polymerization reactor having a melt flow rate of at least 200 grams/10 minutes and a xylene soluble content of no more than 4 wt.%.